Цитата:
|
Сообщение от псих
а чё такое "экзопланета"? 
|
Экзопланета
Экзопланета, это та что находится за пределами Солнечной системы ( "экзо" означает "вне", "снаружи" ),
альтернативный термин – внесолнечная планета ( extra solar planet ). Впервые такие планеты были обнару-
жены в 1990-х годах по слабому "покачиванию" траекторий звёзд, вокруг которых они обращаются.
К середине 2001 планетные системы были открыты у 58 близких к Солнцу звезд и двух радиопульсаров,
причем в некоторых случаях обнаружены системы из нескольких планет, однако до сих пор ни одну из них
не удалось наблюдать и исследовать непосредственно, т.к. даже ближайших к нам планет не видно в ярких
лучах их звёзд. Тем не менее точное измерение движения и спектра звезды позволяет оценить массы на-
иболее крупных членов её планетной системы и параметры их орбит. Поскольку наиболее легко обнару-
живаются самые массивные экзопланеты, сильно раскачивающие звезду, вокруг которой они обращаются,
большинство из открытых экзопланет имели размер не меньше Юпитера или Сатурна, и лишь в отдельных
случаях их размеры были соизмеримы с планетами земной группы.
Поскольку почти одновременно с открытием экзопланет астрономы обнаружили звездообразные объекты
сверхмалой массы – коричневые карлики, – возникла необходимость определить чёткую границу между
звёздами и планетами. Сейчас считается, что планета – это объект, в котором за всю его историю реакции
ядерного синтеза не происходят ни в каком виде. По расчётам, при формировании космических объектов
нормального (солнечного) химического состава с массой более 13 масс Юпитера (Мю) в конце этапа их
гравитационного сжатия температура в центре достигает нескольких миллионов кельвинов, что приводит
к развитию термоядерной реакции с участием дейтерия – тяжелого изотопа водорода, наиболее легко всту-
пающего в реакцию ядерного синтеза. При меньших массах объектов ядерные реакции в них не происхо-
дят. Поэтому массу в 13 Мю считают максимальной массой планеты, а объекты с массами от 13 до 70 Мю
называют "коричневыми карликами", а еще более массивные – обычными "звёздами" главной последова-
тельности их эволюции.
Предположим, что наблюдатель находится у ближайшей к нам звезды Альфа Кентавра и смотрит в сторо-
ну Солнечной системы. Тогда наше Солнце будет сиять для него так же ярко, как звезда Вега (ОЗВ = 0) на
земном небосводе, блеск планет окажется очень слабым: Юпитер будет виден как звезда 23 звездной вели-
чины, Венера – 24 величины, а Земля и Сатурн – 25 величины. Крупнейшие современные телескопы мо-
гут заметить такие слабые объекты, если бы на небе рядом с ними не было ярких звезд.
Астрономы сейчас проектируют приборы, которые смогут отделить свет звёзд от света планет. Например,
изображение яркой звезды можно закрыть специальным экраном или фильтром, такой прибор называют
"звёздным коронографом". Другой метод предполагает "гашение" света звезды за счет эффекта интерферен-
ции ее световых лучей, собранных двумя или несколькими расположенными рядом телескопами – так на-
зываемым "звёздным интерферометром". Поскольку звезда и расположенная рядом с ней планета наблюда-
ются в чуть разных направлениях, с помощью звездного интерферометра (изменяя расстояние между теле-
скопами или правильно выбирая момент наблюдения) можно добиться почти полного гашения света зве-
зды и, одновременно, усиления света планет. Оба прибора – коронограф и интерферометр – очень чувст-
вительны к влиянию земной атмосферы, поэтому для успешной работы их придётся доставить на около-
земную орбиту.
Существуют косвенные методы обнаружения экзопланет, основанные на наблюдении звезды, на фоне
которой перемещается экзопланета. Например, если Земля попадает в плоскость орбиты экзопланеты, то
время от времени экзопланета должна затмевать свою звезду. Если это звезда типа нашего Солнца, а экзо-
планета – типа Юпитера, диаметр которого в 10 раз меньше солнечного, то в результате такого затмения
яркость звезды понизится ~ на 1%. Это можно заметить с помощью телескопа. Главная трудность в том,
что доля таких экзопланет, точно ориентированных своей орбитальной плоскостью к нам..- невелика. К
тому же затмение длится несколько часов, а интервал между затмениями - годы. Тем не менее имеются
предварительные сообщения, что такие затмения наблюдались..
Сильнее всех на движение Солнца влияет массивный Юпитер, если рассматривать двойную систему
Солнце – Юпитер, то они разделены расстоянием 5,2 а.е. и обращаются с периодом около 12 лет вокруг
общего центра масс. Поскольку Солнце примерно в 1000 раз массивнее Юпитера, оно во столько же раз
ближе к центру масс. Значит, Солнце обращается по окружности радиусом 5,2 а.е./1000 = 0,0052 а.е. (это
чуть больше радиуса самого Солнца). С расстояния Альфы Кентавра (4,34 св. года = 275 000 а.е.) радиус
этой окружности виден под углом 0,004 угл. сек. Это очень маленький угол, но астрономы могут измерять
такие углы и поэтому данный метод активно используется для поиска планет у других звёзд.
Первое сообщение в журнале «Nature» об открытии планетной системы вокруг пульсара PSR1829-10
(современное обозначение PSR J1830-10) сделала в середине 1991 группа радиоастрономов Манчестер-
ского университета, наблюдающих на радиотелескопе в Джодрелл-Бэнк. Они объявили, что вокруг ней-
тронной звезды, удаленной от Солнца на 3,6 кпк, обращается планета в 10 раз массивнее Земли по кру-
говой орбите с периодом 6 месяцев. В 1994 в неопубликованном сообщении авторы уточнили, что пла-
нет три: с массами 3, 12 и 8 земных и периодами, соответственно, 8, 16 и 33 месяца. Однако до сих пор
это открытие не подтверждено и поэтому сомнительно.
Первое подтвержддённое открытие экзопланеты сделал польский радиоастроном (A.Wolszczan), кото-
рый с помощью 305-метровой антенны в Аресибо изучал радиопульсар PSR 1257+12, удаленный при-
мерно на 1000 св. лет от Солнца и посылающий импульсы через каждые 6,2 мс. В 1991 ученый заметил
периодическое изменение частоты прихода импульсов. К 1993 выявилось присутствие рядом с пульса-
ром PSR 1257+12 трех планет с массами 0,2, 4,3 и 3,6 массы Земли, обращающихся с периодами 25, 67 и
98 сут. В 1996 появилось сообщение о присутствии в этой системе четвертой планеты с массой Сатурна
и периодом около 170 лет. До сих пор планетная система пульсара PSR 1257+12 демонстрирует нам
единственный пример планет типа Земли за пределом Солнечной системы. Считается весьма странным,
что вообще рядом с нейтронной звездой обнаружились маломассивные спутники. Рождение нейтронной
звезды должно сопровождаться взрывом сверхновой. В момент взрыва звезда сбрасывает оболочку, с ко-
торой теряет большую часть своей массы. Поэтому ее остаток – нейтронная звезда-пульсар – не может
своим притяжением удержать планеты, которые до взрыва быстро обращались вокруг массивной звезды.
Возможно, что обнаруженные у пульсара планеты сформировались уже после взрыва сверхновой, но из
чего и как – пока не ясно.